If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+3t-1500=0
a = 1; b = 3; c = -1500;
Δ = b2-4ac
Δ = 32-4·1·(-1500)
Δ = 6009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{6009}}{2*1}=\frac{-3-\sqrt{6009}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{6009}}{2*1}=\frac{-3+\sqrt{6009}}{2} $
| 3+4n=10+2n | | 3h+9=5 | | 8i^2+68i+32=0 | | x2–6x+9=0 | | 3(-4x-5)+2x=15 | | -1+31x+12=4x-3 | | 35x=25x+20 | | (12x^2+11x+3)=0 | | 28/x+6=7/2 | | 25x+12=37 | | 4/7x-7=-3 | | 5/14=h/20 | | x+60=70+60 | | x^2-3x+9=6 | | 10m+8=7m=+17 | | x+7,3=2,5 | | x+x+60=200 | | 12(x+1)-4(x-5)=3(x-1)+4×+8 | | 3(4c-2)-6=2c+8 | | 9=(x+2)² | | 2/5x-2=x-1/3 | | (12x^2+11x-4)=0 | | 3.8x=7.22 | | -10-2z=z5 | | 7b−.4=6b−2.2 | | x+x-5=27 | | 3x+15-9=2x(x+2) | | w-4/3=2/3 | | -17(y-2)=(-17y)+64 | | 2/5n+7/6=-2n-17/6 | | g2=144 | | 3m+20=2m+180 |